
CERTIFICATE

Certified Passive House Component

Component-ID 0722sp02 valid until 31st December 2017

Passive House Institute
Dr. Wolfgang Feist
64283 Darmstadt
Germany

Category: Spacer for low-E-glazing

Manufacturer: Technoform Glass Insulation GmbH,

Lohfelden, Germany

Product name: TGI-Spacer M

This certificate was awarded based on the following criteria:

Depending on the climatic region, the spacer prevents high surface temperatures, which can cause mould. At least 3 out of the 7 reference frames fulfilled the spacer hygiene criteria for the relevant climatic region.

Hygiene $f_{Rsi} \ge 0.75$

The specific resistance of the spacer's edges is greater than the climate-independent minimum requirement.

Efficiency $R_E = 3.50 \,\mathrm{m}\,\mathrm{K/W} \geq 1.50 \,\mathrm{m}\,\mathrm{K/W}$

Type

Plastic with stainless steel foil Height Box 2

6.90 mm

Thermal conductivity Box 2

 $0.31 \, \text{W/(m K)}$

Technoform Glass Insulation GmbH

Matthäus-Merian-Straße 6, 34253 Lohfelden, Germany

🕿 | 🖂 | 🕆 http://www.glassinsulation.de |

Description

The TGI-Spacer M is a hybrid plastic spacer with metal for firm and gass-tight connection with top thermal resistance for insulating glass.

Spacer height: 6.90 mm

Thermal conductivity: 0.31 W/(m K) (WA 17/1, ift Rosenheim) Available spacer widths: 8, 10, 12, 14, 15, 16, 18, 20, 22 and 24 mm

Appropriate secondary seal	Specific edge resistance R_E	Efficiency class
Polysulfide	$3.54\mathrm{mK/W}$	phB
Polyurethane	4.08 m K/W	phB
Silicone	3.70 m K/W	phB

Explanation

Spacers are categorized into different efficiency classes based on the resistance of their edges R_E . A secondary polysulfide sealant is typically used, unless the spacer is not approved for polysulfide. A detailed report with the calculations is available from either the manufacturer or the Passive House Institute.

The Passive House Institute has defined global component requirements for seven climate regions. In principle, components that have been certified for climates with higher requirements can also be used in climates with lower requirements. This may be economically advantageous.

Use in PHPP:

If individually calculated values are not available then the thermal bridge loss coefficient specified in in this document can be used. In this case, the appropriate reference frame must be selected and a 10 % safety margin should be applied.

Further information regarding certification is available on www.passivehouse.com and www.passipedia.org .

2/4 TGI-Spacer M

Climate Arcite Cool volumental Cool temperate Warm temperate Warm temperate Glass Quadruple Triple Triple Triple Triple Double Glass Dackage 4/12/31/2/41 e/18/218/6 6/16/616/6 6/16/61/6		Reference frames calculated with Polysulfide					
Glass package 4/12/3/12/3/12/4 6/18/18/18/18/18/18/18/18/18/18/18/18/18/	Climate					Warm√	
Glass U-value 0.35 W/(m² K) 0.52 W/(m² K) 0.70 W/(m² K) 0.70 W/(m² K) 1.20 W/(m² K) Timber-aluminium integral frame U _I [W/(m² K)] 0.48 0.62 0.73 0.87 1.03 0.041		Quadruple	Triple	•	·	Double	
Timber-aluminium integral frame $U_f[W/(m^2K)] = 0.48 = 0.62 = 0.73 = 0.87 = 1.03$ $w_g[W/(m K)] = 0.035 = 0.037 = 0.037 = 0.036 = 0.041$ $f_{Ris}[\cdot] = 0.78 = 0.74 = 0.70 = 0.69 = 0.59$ Timber-aluminium $U_f[W/(m^2K)] = 0.54 = 0.57 = 0.75 = 0.97 = 1.19$ $w_g[W/(m K)] = 0.037 = 0.039 = 0.039 = 0.038 = 0.045$ $f_{Ris}[\cdot] = 0.74 = 0.72 = 0.68 = 0.65 = 0.53$ Timber $U_f[W/(m^2K)] = 0.51 = 0.53 = 0.78 = 0.86 = 0.99$ $w_g[W/(m K)] = 0.032 = 0.036 = 0.036 = 0.036 = 0.041$ $f_{Ris}[\cdot] = 0.77 = 0.75 = 0.72 = 0.72 = 0.61$ V Vinyl $U_f[W/(m^2K)] = 0.032 = 0.036 = 0.036 = 0.036 = 0.041$ $f_{Ris}[\cdot] = 0.77 = 0.75 = 0.82 = 1.02 = 1.16$ $w_g[W/(m K)] = 0.038 = 0.040 = 0.041 = 0.042 = 0.047$ $f_{Ris}[\cdot] = 0.77 = 0.74 = 0.72 = 0.71 = 0.60$ V Aluminium $U_f[W/(m^2K)] = 0.60 = 0.61 = 0.71 = 0.73 = 1.17$ $w_g[W/(m K)] = 0.039 = 0.044 = 0.042 = 0.045 = 0.051$ $f_{Ris}[\cdot] = 0.78 = 0.77 = 0.75 = 0.75 = 0.75 = 0.62$ V Curtain wall timber $U_f[W/(m^2K)] = 0.60 = 0.65 = 0.66 = 0.71 = 1.11$ $w_g[W/(m K)] = 0.044 = 0.044 = 0.046 = 0.046 = 0.057$ $f_{Ris}[\cdot] = 0.75 = 0.75 = 0.75 = 0.79 = 1.33$ $w_g[W/(m K)] = 0.052 = 0.055 = 0.055 = 0.055 = 0.077$	Glass package	4/12/3/12/3/12/4	6/18/2/18/6	6/16/6/16/6	6/16/6/16/6	6/16/6	
integral frame U_{l} [W/(m² K)]	Glass U-value	$0.35 W/(m^2 K)$	$0.52W/(m^2K)$	$0.70 W/(m^2 K)$	$0.70 W/(m^2 K)$	1.20 W/(m ² K)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	integral frame	0.40	0.00	0.70	0.07	1.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- ' '-						
Timber-aluminium					0.00		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T _{Rsi} [-]	0.78	0.74	0.70	0.69	0.59	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Timber-aluminium						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	U_f [W/(m ² K)]	0.54	0.57	0.75	0.97	1.19	
Timber	Ψ_g [W/(m K)]	0.037	0.039	0.039	0.038	0.045	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	f _{Rsi} [-]	0.74	0.72	0.68	0.65 🗸	0.53	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Timber					· -	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	U_f [W/(m ² K)]	0.51	0.53	0.78	0.86	0.99	
Vinyl	Ψ_g [W/(m K)]	0.032	0.036	0.036	0.036	0.041	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	f _{Rsi} [-]	0.77	0.75	0.72	0.72	0.61	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vinyl						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	U_f [W/(m ² K)]	0.70	0.75	0.82	1.02	1.16	
Aluminium $U_f [W/(m^2 K)]$	Ψ_g [W/(m K)]	0.038	0.040	0.041	0.042	0.047	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	f _{Rsi} [-]	0.77	0.74	0.72	0.71 🧹	0.60	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Aluminium						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	U_f [W/(m ² K)]	0.60	0.61	0.71	0.73	1.17	
Curtain wall timber $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ψ_g [W/(m K)]	0.039	0.044	0.042	0.045	0.051	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	f _{Rsi} [-]	0.78	0.77 🧹	0.75 🧹	0.75 🧹	0.62 🗸	
$ \Psi_g \ [\text{W}/(\text{m K})] \qquad 0.044 \qquad 0.044 \qquad 0.046 \qquad 0.046 \qquad 0.057 \\ f_{Rsi} \ [\text{-}] \qquad 0.75 \qquad 0.74 \qquad 0.71 \qquad 0.71 \qquad 0.57 \qquad \\ \text{Curtain wall aluminium} \qquad \\ U_f \ [\text{W}/(\text{m}^2 \text{K})] \qquad 0.67 \qquad 0.73 \qquad 0.75 \qquad 0.79 \qquad 1.33 \\ \Psi_g \ [\text{W}/(\text{m K})] \qquad 0.052 \qquad 0.052 \qquad 0.055 \qquad 0.055 \qquad 0.077 \\ \hline $	Curtain wall timber	E					
$ \Psi_g \ [\text{W}/(\text{m K})] \qquad 0.044 \qquad 0.044 \qquad 0.046 \qquad 0.046 \qquad 0.057 \\ f_{Rsi} \ [\text{-}] \qquad 0.75 \qquad 0.74 \qquad 0.71 \qquad 0.71 \qquad 0.57 \qquad \\ \text{Curtain wall aluminium} \qquad \\ U_f \ [\text{W}/(\text{m}^2 \text{K})] \qquad 0.67 \qquad 0.73 \qquad 0.75 \qquad 0.79 \qquad 1.33 \\ \Psi_g \ [\text{W}/(\text{m K})] \qquad 0.052 \qquad 0.052 \qquad 0.055 \qquad 0.055 \qquad 0.077 \\ \hline $	U_f [W/(m ² K)]	0.60	0.65	0.66	0.71	1.11	
f_{Rsi} [-] 0.75 0.74 0.71 0.71 0.57 Curtain wall aluminium 0.67 0.73 0.75 0.79 1.33 Ψ_g [W/(m K)] 0.052 0.052 0.055 0.055 0.077	- ' '	0.044	0.044	0.046	0.046	0.057	
Curtain wall aluminium $U_f [W/(m^2 K)] 0.67 0.73 0.75 0.79 1.33$ $\Psi_g [W/(m K)] 0.052 0.052 0.055 0.055 0.077$	· ·	0.75	0.74	0.71	0.71	0.57	
$\Psi_g [\text{W/(m K)}]$ 0.052 0.055 0.055 0.077	Curtain wall aluminium	8	[
f_{Rsi} [-] 0.83 $\sqrt{}$ 0.82 $\sqrt{}$ 0.79 $\sqrt{}$ 0.68 $\sqrt{}$	· ·						
	f _{Rsi} [-]	0.83	0.82	0.79 🗸	0.79 🧹	0.68	

