Steel Construction New Zealand Slab Panel Method Workshop

An afternoon seminar for Design Engineers and Regulatory Authorities

Auckland 2nd September 2014 Christchurch 9th September 2014

STEEL CONSTRUCTION

About the Presenters

Dr Charles Clifton, University of Auckland

Charles has specialised in structural steel and composite engineering since joining the University of Auckland in 2008. This followed a productive period since 1983 as Senior Structural Engineer at the Heavy Engineering Research Association, where he conducted research in structural steel, composite construction, fire engineering and durability. He also made considerable contributions to the introduction of new and revised standards, developed widely used design guides and was actively involved in professional development. A long and productive collaboration with the University of Auckland saw many innovations researched, developed and adopted by the profession, and also saw the award of his PhD in 2005.

Charles is a Fellow of the Institute of Professional Engineers New Zealand and of the National Society for Earthquake Engineering. He is currently active in a range of research projects involving the development of low-damage seismic solutions, performance of composite steel floors in severe fires, and floor and frame solutions using light gauge steel members and components.

Dr Anthony Abu, University of Canterbury

Dr. Anthony Abu is the New Zealand Fire Service Commission Lecturer in Fire Engineering at the University of Canterbury. Tony obtained his Bachelor's degree in Civil Engineering from Eastern Mediterranean University, North Cyprus and then completed his PhD in Structural Fire Engineering at the University of Sheffield, UK, on the behaviour of composite floor slabs in fire.

He has been involved in the implementation of the structural fire engineering Eurocodes in the UK and also worked on a number of structural, and structural fire engineering projects, including a number of sports stadia, office complexes and airports, during a brief period with Buro Happold Engineers Ltd. UK.

Structural Performance to be Delivered by the Procedure - 1 of 2

Under severe fire conditions:

- Slab and secondary beams may undergo appreciable deformation
- Support beams and columns undergo minimal deformation
- Tensile membrane response may be activated
- Load-carrying capacity and integrity are preserved for calculated t_e or specified FRR
- Insulation is met for required period

Detailing Requirem	nents			
(1) Floor slab				
 Decking fastened Slab tied to edge Shear failure at summer 	to beams; typic beams Ipports suppres	cally co sed by	omposite y shear reinfor	cement
(2) Protection to slab pa	anel edge suppo	ort bea	ams	
 When specified, appreciation Details given for a beams 	oply over full le opplication arou	ngth nd cor	nnections to se	condary
(3) Protection to columr	ns when needed	ł		
 Apply over full len 	gth			
THE UNIVERSITY OF AUCKLAND FACULTY OF ENGINEERING	UNIVERSITY OF CANTERBURY Te Where Wiensange o Weitsche	8	SCNZ	L CONSTRUCTION ZEALAND

Results of tests D147 top surface crack pattern									
[Applied	Ambient te	emperature	At 3 hou	irs in the IS	O fire	
		Slab	load, w (kPa)	W _{u,o} (kPa)	Load ratio, r _{load}	Max. Steel Temp. (°C)	W _{u,r} (kPa)	Load ratio, Fload,r	
	1	661 Flat slab	5.40	20.0	0.270	683	2.40	2.25	
Ī	2	HD12 Flat slab	5.40	28.2	0.191	688	6.49	0.83	
1	3	D147 Flat slab	5.40	13.3	0.406	703	1.47	3.67	
1	4	Hibond slab	5.52	70.2	0.079	672	1.09	5.06	
I	5	Traydec slab	6.12	75.0	0.082	339	8.57	0.71	
	6	Speedfloor	5.16	55.1	0.094	623	2.02	2.55	
	Load ratio $\leq 1.0 \Rightarrow$ no tensile membrane enhancement required Load ratio $> 1.0 \Rightarrow$ tensile membrane enhancement is required								
ACU		E UNIVERSIT	Y	UNIVER CANTE Te Whate Watta	SITY OF RBURY ngs o Wattaha	20	CNZ	STEEL CONSTRUCT NEW ZEALAND	TIO

Step 11: Distribution of Slab Panel Loads into Supporting Members for Strength Determination 2005

- Based on yieldline pattern but with modifications from 2013 study: see application slides for changes
- This loading must be sufficient to avoid support beam failure and subsequent slab panel plastic collapse (Abu)

• FEM modelling showed that the two way deformation pattern is more realistic than ambient temperature design

DEACHCE								
practice								
	Hand calc.(HC)	ABAQUS (ABQ)	((ABQ-HC)/ABQ)*100	SPM	ABAQUS	((ABQ-SPM)/ABQ)*100		
Column-1 (A-5)	64.8	43.5	-49.0%	55.0	71.8	23.4%		
Column-2 (B-5)	159.9	180.2	11.3%	148.8	130.0	-14.5%		
50% of Column A-4	18.9	29.6	36.1%	32.6	31.2	-4.5%		
Total	243.6	253.3	3.8%	236.4	233.0	-1.5%		

Step 12: Including Length of Structural Fire Severity on Limiting Deflection 2005/2006

Slab panel central vertical downwards deflection versus time shows three stages of behaviour in fire:

Stage 1: Decreasing rate of deflection with time due to thermal effects

Stage 2: Constant rate of deflection with time due to loss of yieldline capacity balanced by enhanced tensile membrane resistance. Some surface cracks in slab due to loss of moisture from concrete

Stage 3: Increasing rate of deflection with full depth cracks(s) forming and ultimately fracture of reinforcement crossing the crack(s)

Step 17: Including Limitation Based on Compression Failure of Concrete Compression Ring 2010

- Avoidance of concrete compression failure in edge of slab
- Calculation of design width of concrete in compression
- Ensuring this is not also included in composite slab contribution to supporting beam
- More on this in the application slides

Step 18: Critical Review of Design Temperatures of Unprotected Secondary Beams within Slab Panel and SPM Deflection Limits 2011

4th year student project in 2011 Objectives:

- Review temperatures used for unprotected steel beams in SPM 2006 against 6 recent large scale fire tests
- 2. Review relationship between fire gas temperature and steel beam temperature against same 6 tests
- 3. Review calculated deflections against test deflections
- 4. Make recommendations for changes to SPM 2006 criteria

Demonstration Furniture Test 1995

Tests used:

1. Cardington

- 2. Cardington Corner Test 1995
- 3. Cardington Corner Test 2003

SCNZ STEEL CONSTRUCTION

- 4. Mokrsko
- 5. FRACOF

35

6. COSSFIRE

Step 18: Critical Review of Design Temperatures of Unprotected Secondary Beams within Slab Panel

UNIVERSITY OF

NTERBURY

Unprotected Secondary Beams within Slab Panel and SPM Deflection Limits 2011

Fire test	$\phi_{\text{fire}} w_u$	w* _{test}	$w^*_{test} / \phi_{fire} w_u$	Δ_{limit}	Δ_{test}	$\Delta_{test}/\Delta_{limit}$	t _{eq}	Notes on t_{eq}			
	kPa	kPa		mm	mm		mins				
Cardington Furniture Test	7.09	4.94	0.7	726	642	0.88	54	Calculated	from t _{eq} =	e _f k _b w _f	
Cardington Corner Test	6.47	4.94	0.76	754	388	0.51	62	Calculated	from t _{eq} =	e _f k _b w _f	
Cardington 2003 Test	5.25	7.15	1.36	777	919	1.18	57	Calculated	from t _{eq} =	e _f k _b w _f	
Mokrsko Test	7	6.6	0.94	864	892	1.03	65	Calculated	from t _{eq} =	e _f k _b w _f	
FRACOF Test	19.55	6.89	0.35	750	460	0.61	120	Duration h	eating cur	ve in furnad	ce
COSSFIRE Test Option 1 (Note 1)	8.91	6.41	0.72	668	465	0.7	120	Duration h	eating cur	ve in furnad	ce
COSSFIRE Test Option 2 (Note 1)	4.19	6.41	1.53	668	465	0.7	120	Duration h	eating cur	ve in furnad	ce
Average value of 6 tests			0.81			0.82					
Note 1: The COSSFIRE test panel un The first option is the SPM calculati option is the SPM calculation on the slab panel length L, is doubled as th	derwent a s on on the ba basis that on hat support b	upport fa asis of all one L _x sup pecomes	ilure of one sh support beam pport beam is i an effective co	ort edge s effectiv neffectiv entreline	support ve. The s ve and th of a larg	ing beam. econd erefore the er panel.					
			IIC	YO #							
OF AUCKLANI	T D G		UNIVERS CANTER Te Whare Wanang	ITY OF BURY 24 o Waitaha		36	sci		EEL CON	ISTRUCTI AND	101
			CHARTER ON ON ON ON ON ON ON								

Step 20: Comparison of SPM with Other Desktop Based Computer Programs for Composite Floor System Design

- Summer research project 2012/2013 (Daniels 2013)
- Comparison SPM, MACS+, TSLAB
- Conclusions:
 - SPM is the most comprehensive and technically accurate
 - SPM is the only one including detailing requirements
 - SPM and TSLAB bases design adequacy on structural fire severity (t_e)
 - MACS+ bases design adequacy on either structural fire severity or parametric time temperature fire exposure

STEEL CONSTRUCTION

SCNZ

38

Determining the Adequacy of Slab Panel Detailing Provisions

- Determine by large scale experimental testing or modelling the adequacy of the current SPM detailing provisions
- Three large scale fire tests have recently supported the need for these with premature failures when details not included:
 - Mokrsko: slab pulled off slab panel edge support beam due to lack of edge and anchor bars around shear studs
 - Fracof: fracture of mesh where not adequately lapped within slab panel
 - VUT: shear failure at interior support where interior support bars too short and wrongly placed

45

SCNZ STEEL CONSTRUCTION

• Planned second VUT test imminent that will test some of these provisions further especially the strength and stability of support beam requirements

UNIVERSITY OF CANTERBURY

References 2 of 4			
 ENV1991-1-2 2002. Eurocode 1: Actions on Structures P Actions on Structures Exposed to Fire. In: CF Belgium. HUANG, Z., BURGESS, I. W. & PLANK, R. J. 200 Action of Concrete Slabs in Composite Act Development and Validations. ASCE Journal of 129, 1093 - 1112. 	art 1-2: General A N (ed.). CEN, E 3. Modelling Me on in Fire, The <i>c Structural Engl</i> .	actions - Brussels, embrane coretical <i>neering</i> ,	
ISO834 1999. Fire Resistance Tests - Elements of Bui General Requirements. In: ISO, G., SWITZERL Switzerland	ding Construction AND (ed.). ISO,	n Part 1 Geneva,	
 KIRBY, B. 1998. The Behaviour of a Multi-Storey Steel to Fire Attack-Experimental Data: Also data from Corner Fire Test and the Large Compartment F British Steel Swinden Technology Centre. LI Y & WIL M Year Temperatures in Steel Beams in 	Framed Building BRE, Cardingtor ire Test, 1996. S Office Building F	Subject n, on the winden: Tires In:	
University of Auckland Civil Engineering 4 Auckland. Auckland.	th Year Projects	s, 2011	
LIM, L. & WADE, C. A. 2002. Experimental Fire Tes Slabs, Fire Engineering Research Report 02 University of Canterbury.	ts of Two-Way C 2/12. Christchurc	Concrete h, NZ:	
MAGO, N. 2004a. Influence of slab panel edge saggin SPM: Concise summary, HERA Report R4-118.1	g in fire - Stage Manukau City, N	2 of the IZ: New	
	F 19		STEEL CONSTRUCTION
FACULTY OF ENGINEERING To Whar Waarga o Wa	RY 40		NEW ZEALAND

