

84 Symonds Street PO Box 5811 Wellesley Street Auckland 1141 New Zealand T: +64 9 379 7822 F: +64 9 309 3540 www.marshallday.com

DESIGN GUIDE

Floors in buildings are often required to achieve certain levels of acoustic performance. There are two factors to consider, firstly the reduction of airborne sound transmission (e.g. music, speech, plantroom noise), and secondly the control of impact sound (typically footsteps).

The airborne sound reduction of a floor is determined by its mass, the ceiling below (if any), the acoustic blanket in the ceiling cavity (if any), and the rigidity of the attachment between ceiling and floor structure. In general, the airborne sound reduction of a floor increases by 6 dB per doubling of its mass (the well known mass law), the addition of a plasterboard ceiling can increase performance by 5 - 8 dB, or 13 - 16 dB if an acoustic blanket is placed in the cavity, but will decrease by up to 5 dB if the ceiling is rigidly connected to the floor structure.

Table 1 below gives the STC $/R_w$ for Speedfloor constructions, of various slab thicknesses, with and without ceilings, and with and without a fibreglass or polyester acoustic blanket in the cavity.

Impact sound is determined by similar factors to airborne sound reduction, but in addition the floor covering will have a large influence. In general concrete floors may generate high levels of impact sound, but this is easily controlled by using resilient floor coverings (cushioned vinyl, carpet, tiles on acoustic underlay). Table 2 below gives the IIC $/L_{n,w}$ ratings for Speedfloor constructions of various slab thicknesses, with and without ceilings, and with and without a fibreglass or polyester acoustic blanket in the cavity. The improvements that can be achieved with typical floor coverings are noted below the table.

Design Criteria

The acoustic performance of floors both for airborne and impact sound, is important in many situations.

National Building Codes (such as the New Zealand Building Code, clause G6 or the Building Code of Australia (BCA)), set minimum acoustic performance for residential buildings that must be met, and these are summarised in the table below. For other non-residential buildings the table below gives guidance on typical recommended values. However, the degree of sound insulation can depend on a number of factors including the loudness of the sound source, the background noise level in the receiving room, and the degree of acoustical privacy that is required. Therefore, for critical applications specialist advice should be sought.

This document may not be reproduced in full or in part without the written consent of Marshall Day Acoustics Limited

Building Type	Typical Floor Requirement	
	STC	R _w + Ctr
Residential:		
NZ Building Code	≥55	
Building Code of Australia (Class 2)		≥50
Offices	45	40
Educational:		
Lecture theatres	55	50
Class rooms	50	45
Tech rooms	60	55
Retail	45	40
Hospitals/Healthcare		
Patient rooms	45	40
Consulting rooms	55	50

Table 1: Airborne Sound Reduction

More demanding situations such as aerobics, gymnasiums, performing arts venues, HVAC plant rooms, etc require specialist advice.

Table 2: Impact Sound

Building Type	uilding Type		Typical Floor Requirement	
		IIC	Ln, w+CI	
Residential: NZ Building Co Building Code of Austra		≥ 55	≤ 62	
Educational: Class rooms Hospitals/Healthcare	;	45		
Offices	IS	50 45		

This document may not be reproduced in full or in part without the written consent of Marshall Day Acoustics Limited

J:\PROPOSALS\2013\201303ab\Lt 001 201303ab kob.docx

Rating Methods

There are two common rating methods for comparing walls; in New Zealand the ASTM Standards are used and the airborne sound insulation is rated by the STC value. In Australia the ISO Standards are used and the airborne sound insulation is rated either by R_w (laboratory) or D_{nTw} (field) with usually the addition of an adaption terms C_{tr} . The STC and R_w values are usually very close, but the C_{tr} term can be -4 to -12 dB depending on the construction.

For impact sound the comparable ratings are IIC, (ASTM), or $L_{n,w}$ (with usually a C_I correction term) (ISO). It is difficult to compare these two rating methods.

Floor Slab Thickness	No Ceiling	Ceiling (1 layer of 10 or 13mm plasterboard)	
		No Acoustic Blanket	75 mm minimum Acoustic Blanket
75	45	56	64
90	48	57	67
100	49	57	68
125	52	59	70
150	55	61	72
175	57	64	74

Speed Floor Constructions

Table 3A: Airborne Sound Ratings (STC/R_w)

It is assumed the ceiling lining is fixed to a light steel grid (for instance USG FC35 or FC50 steel furring channels) hung beneath the floor, forming a minimum 200mm deep ceiling cavity. If the ceiling is rigidly fixed to the bottom of the Speedfloor trusses these ratings may be reduced by 1-5 dB. In practice flanking sound transmission may limit performance in real situations.

Acoustic blanket should be fibreglass, polyester or mineral wool, a minimum of 75mm thick, and of minimum 10kg/m³.

Floor Slab Thickness	No Ceiling	Ceiling (1 layer of 10 or 13mm plasterboard)	
		No Acoustic Blanket	75 mm minimum Acoustic Blanket
75	43	51	60
90	45	52	62
100	46	51	62
125	48	52	64
150	50	53	64
175	52	55	66

Table 3B: Airborne Sound Ratings (R_w + C_{tr})

It is assumed the ceiling lining is fixed to a light steel grid (for instance USG FC35 or FC50 steel furring channels) hung beneath the floor, forming a minimum 200mm deep ceiling cavity. If the ceiling is rigidly fixed to the bottom of the Speedfloor trusses these ratings may be reduced by 1-5 dB. In practice flanking sound transmission may limit performance in real situations.

Acoustic blanket should be fibreglass, polyester or mineral wool, a minimum of 75mm thick, and of minimum 10kg/m³.

Floor Slab Thickness	No Ceiling	Ceiling (1 layer of 10 or 13mm plasterboard	
		No Acoustic Blanket	75 mm minimum Acoustic Blanket
75	16	32	33
90	19	36	36
100	22	38	39
125	26	42	43
150	29	44	45
175	30	46	47

Table 4A: Impact Sound Ratings (IIC)

Notes: 1. Floor coverings improve the IIC rating by approximately the following amount:

incorrectings improve the retaing s,	approxim
Carpet tiles	+ 22 dB
Carpet on underlay	+ 35 dB
Cushioned vinyl	+ 16 dB
Timber floors on foam underlay	+ 15 dB
Ceramic tiles on acoustic cork underlay	+ 15 dB

Floor Slab Thickness	No Ceiling	Ceiling (1–2 layers of 10 or 13mm plasterbo	
		No Acoustic Blanket	75 mm minimum Acoustic Blanket
75	80	66	59
90	78	64	57
100	75	62	54
125	72	59	51
150	70	57	50
175	68	55	46
Notes: 1. Floor coverings reduce the Ln, w rating by approximately the following amount:			

Table 4B: Impact Sound Ratings (L_{n,w} + C_l)

 Notes:
 1.
 Floor coverings reduce the Ln,w rating by approximately the following amou
Carpet tiles

 Carpet tiles
 + 22 dB

 Carpet on underlay
 + 35 dB

 Cushioned vinyl
 + 16 dB

 Timber floors on foam underlay
 + 15 dB

 Ceramic tiles on acoustic cork underlay
 + 15 dB

Flanking Sound Transmission

Sound can travel by several paths between rooms.

As well as sound being transmitted directly through the floor/ceiling to the room below, sound can travel along the floor slab, under a wall, and into an adjacent room. This is known as a flanking path and should always be considered for high performance constructions or critical situations.

Generally when there is a requirement for STC/R_w 50 or greater between rooms, floor slabs should be at least 125 mm thick to reduce sideways flanking transmission. In practice to achieve ratings of greater than STC/R_w 55 will require careful attention to suppressing flanking transmission.