TYPICAL DETAIL // ALUMINIUM BEAM & POST STRUCTURES

LouvreTec

PRODUCT CATALOGUE 2009[©] LOUVRETEC[®] GROUP // technical specification subject to change without notic

TYPICAL DETAIL // ENGINEERING SPECIFIERS GUIDE

PRODUCT CATALOGUE 2009[®] LOUVRETEC[®] GRO // technical specification subject to change without no

LouvreTec

engineering - louvre calculation

PLEASE REFER TO ENGINEERING REFERENCES AND DESIGN INFORMATION - PAGES 12.01, 12.02

// STEP I - DETERMINE WIND ZONE

// STEP 2 - DETERMINE STRUCTURE TYPE

LOUVRE TYPE HORIZONTAL

ſ

	SPANS FOR HORIZONTAL LOU	VRES (ROC	OF OR WAL	L)		TABLE			
		Maximum Louvre Span (mm)							
	Wind Zone	Inside (self wt)	L	М	н	VH			
	Factored wind speed at building		I I 5km/h	I 33km/h	I 58km/h	l 79km/ł			
			32 m/s	37 m/s	44 m/s	50 m/s			
	Ultimate limit state loads (kPa)		+1.1	+1.48	+2.09	+2.70			
			-1.38	-1.85	-2.61	-3.38			
	Louvre Type								
N	180 Classic Opening Roof	4500	3900	3750	3200	2800			
\searrow	180 Linear Opening Roof	3900	3750	3400	3000	2750			
	260 Translucent Opening Roof	5200	3100	2700	2300	2050			
	200 Direct Drive Opening Roof	4500	3900	3750	3200	2800			
	125 Louvre Line Weatherboard Panel	2600	2500	2300	2050	1900			
	180 Louvre Line Weatherboard Panel	3200	3050	2800	2500	2300			
<u>_</u>	120 Louvre Line Flush Panel	2600	2500	2300	2050	1900			
2	200 Louvre Line Flush Panel	3500	3350	3000	2650	2450			
	40mm Mini Louvre	1500	1350	1200	1100	1000			
Þ	58mm Mini Louvre - Slimline 60	1700	1600	1400	1300	1200			
2	70mm Mini Louvre	2050	1900	1700	1500	1400			
\square	90mm Midi Louvre	2350	2000	1850	1600	1500			
>	150mm Midi Louvre	2900	2750	2500	2200	2000			
	95mm Midi Louvre - Slideline 100	2600	2300	2100	1850	1650			
	I 20mm Airfoil	2400	2300	2100	1850	1700			
\sim	I 80mm Airfoil	3100	2950	2700	2400	2200			
	200mm Maxi	3700	3700	3550	2950	2600			
200	300mm Maxi	4800	4800	4800	4200	3700			
1	600mm Maxi	7150	6550	5600	4700	4100			

LouvreTec

Fr.

engineering - louvre calculation

LOUVRE TYPE VERTICAL

	SPANS FOR VERTICAL LOUVRE	S (WALL LO	DADING)			TABLE 2			
	Maximum Louvre Span (mm)								
	Wind Zone	Inside (self wt)	L	М	н	VH			
	Factored wind speed at building		I I 5km/h	l 33km/h	l 58km/h	l 79km/h			
			32 m/s	37 m/s	44 m/s	50 m/s			
	Ultimate limit state loads (kPa)		0.84	1.13	1.6	2.06			
	Louvre Type								
1	180 Classic Opening Roof	5000	4400	4200	3850	3500			
	180 Linear Opening Roof	4500	4100	3900	3500	3200			
	260 Translucent Opening Roof	3700	3500	3100	2600	2300			
	200 Direct Drive Opening Roof	5000	4400	4200	3850	3500			
<u>¢</u>	125 Louvre Line Weatherboard Panel	3100	2900	2700	2500	2300			
	180 Louvre Line Weatherboard Panel	3700	3500	3200	2850	2650			
<u>₹\$¢</u> L	120 Louvre Line Flush Panel	3100	2900	2700	2500	2300			
	200 Louvre Line Flush Panel	4200	3800	3400	3000	2800			
	40mm Mini Louvre	1600	1550	1400	1250	1150			
Ô	58mm Mini Louvre - Slimline 60	1900	1800	1650	1500	1350			
	70mm Mini Louvre	2300	2150	2000	1750	1600			
	90mm Midi Louvre	2400	2300	2100	1900	1750			
	150mm Midi Louvre	3300	3150	2900	2550	2350			
	95mm Midi Louvre - Slideline 100	2650	2600	2350	2150	1900			
	I 20mm Airfoil	2800	2650	2400	2150	1950			
	180mm Airfoil	3600	3400	3100	2750	2550			
	200mm Maxi	4700	4450	4050	3500	3100			
	300mm Maxi	6700	6400	5700	4900	4400			
	600mm Maxi	7800	7450	6550	5600	5000			

Notes:

This table is for louvres spanning vertically, and located within 1.0m of a building less than 10m in height. For a free standing structure specific design is required as loadings increase. The supporting structure and fixings must be checked / designed by a Chartered Professional Engineer and not taken from tables in this manual.

engineering - beam calculation

TO CALCULATE TRIBUTARY LENGTH FOR BEAMS

Typically the tributary length for simply supported beams only is half the length of the louvre span (refer note below) Determining the Tributary length is shown through figures 1-4 on pages 10.09 and 10.10 of this engineering section.

Note: Care must be taken when calculating the tributary length for mid beams on continuous spanning structures as half the louvre span on either side of the beam may not be equal.

ROOF BEAM, SIMPLY SUPPORTED TABLE 3										
	Max Beam Span (mm)									
Tributary length of louvres		1	1.5	2	2.5	3	3.5	4	4.5	5
Wind Zone	Beam Size (mm)	Ì	1	ĺ	1					
	150x50x3	3900	3450	3150	2900	2750	2550	2400	2250	2150
	2 / 150x50x3	4900	4300	3900	3650	3450	3300	3150	3000	2900
L	200×50×3	5000	4400	4000	3700	3400	3150	2950	2750	2600
	2 / 200×50×3	6250	5500	5000	4700	4400	4200	4000	3850	3700
	250x50x3	6100	5350	4900	4450	4050	3750	3500	3300	3100
	2 / 250x50x3	7550	6700	6100	5700	5350	5100	4900	4650	4400
	300×50×3	7150	6300	5700	5100	4650	4300	4000	3800	3600
	2 / 300x50x3	8850	7800	7150	6650	6300	6000	5750	5500	5250
	150x50x3	3600	3150	2850	2600	2350	2200	2050	1900	1800
	2 / 150x50x3	4500	4000	3600	3350	3150	3000	2850	2700	2550
	200×50×3	4650	4050	3550	3200	2900	2700	2500	2350	2250
	2 / 200x50x3	5800	5100	4650	4300	4050	3800	3600	3350	3200
M	250x50x3	5650	4900	4250	3800	3450	3200	3000	2800	2700
	2 / 250x50x3	7000	6200	5650	5250	4900	4500	4200	4000	2700 3750
	300×50×3	6600	5650	4900	4350	3950	3650	3450	3250	3050
	2 / 300x50x3	8200	7250	6600	6150	5800	5400	5000	4750	4500
	150x50x3	3200	2800	2400	2150	1950	1800	1700	1600	1500
	2 / 150x50x3	4050	3500	3200	2950	2750	2500	2400	2250	2100
	200x50x3	4100	3450	2950	2650	2400	2250	2100	2000	1900
	2 / 200x50x3	5200	4500	4100	3800	3450	3200	3000	2800	2650
н	250x50x3	5000	4100	3550	3150	2900	2700	2500	2350	2250
	2 / 250x50x3	6300	5500	5000	4450	4050	3750	3500	3300	3150
	300×50×3	5800	4700	4050	3650	3300	3050	2850	2700	2550
	2 / 300x50x3	7400	6500	5900	5300	4850	4500	4200	3950	3750
	150x50x3	2900	2450	2100	1900	1700	1600	1500	1400	1350
	2 / 150x50x3	3700	3200	2900	2650	2400	2250	2100	1950	1850
	200x50x3	3700	3000	2600	2300	2100	1950	1850	1700	1650
	2 / 200×50×3	4750	4100	3700	3300	3000	2800	2600	2450	2300
VH	250x50x3	4400	3600	3100	2800	2500	2350	2200	2050	1950
	2 / 250x50x3	5800	5000	4350	3900	3550	3300	3100	2900	2750
	300x50x3	5050	4100	3550	3200	2900	2700	2500	2350	2250
	2 / 300x50x3	6800	5900	5200	4650	4250	3900	3650	3450	3250

Fix double beams together with 2/10g x 25mm S/S Pan head self tapping screws 50mm in from top and bottom of box section at 900crs. Use continuous flexible sealant / adhesive along top and bottom between box sections.

LouvreTec

PRODUCT CATALOGUE 2009[®] LOUVRETEC[®] GROUP // technical specification subject to change without notice TYPICAL DETAIL // SIMPLY SUPPORTED BEAM FIGURE I

TYPICAL DETAIL // CANTILEVER BEAM FIGURE 2

Plan view / Louvre and Beam Design

Front Elevation

SCALE NTS

LouvreTec

PRODUCT CATALOGUE 2009[©] LOUVRETEC[®] GROUP // technical specification subject to change without notice

TYPICAL DETAIL // CONTINUOUS BEAM SPAN OPTION I FIGURE 3

TYPICAL DETAIL // CONTINUOUS BEAM SPAN OPTION 2 FIGURE 4

Plan view / Louvre and Beam Design

LouvreTec

Front Elevation

SCALE NTS

in technical specification subject to change without notice

TYPICAL DETAIL // DETERMINING TRIBUTARY AREA & BEAM FIGURE 5

LouvreTec

Plan - Simply Supported & Cantilever Frame

PRODUCT CATALOGUE 2009® LOUVRETEC® GROUP // technical specification subject to change without notice

75

100

POST ORIENTATION

RELATIVE TO HOUSE

IS AVAILABLE

TO ENSURE MAXIMUM

CAPACITY OF SECTION

50

20

// LOW WIND ZONE

SPECIFYING POSTS

To use the following tables you need to have the beam length for design, know the tributary area (roof area) for the post and know the height of the post. Determining these values is shown in figure 5 on page 10.11

TO CALCULATE TRIBUTARY AREA FOR POSTS

The tributary area for post design only is the total area of the roof, typically length multiplied by width.

POST ORIENTATION

Care must be taken using post sizes 75x50x3 and 100x50x3. If posts are placed in orientation as shown use post sizes in tables. If orientation is 90° to that orientation treat post (for sizing) as a 50x50x3 post.

POST LOADS

Wind speeds taken from NZS 3604; 1999, are ultimate limit state wind speeds

- L = Low wind speed
- = Medium wind speed Μ
- H = High wind speed
- VH =Very high wind speed

Wind pressure had been calculated using AS/NZS 1170.2.2002

P nl := (0.5 pair).V s it_β_any².Cfig1.Cdyn.10⁻³

LouvreTec

-7.0

// LOW WIND ZONE

LouvreTec

PRODUCT CATALOGUE 2009[©] LOUVRETEC[®] GROUP // technical specification subject to change without notice

75

100

POST ORIENTATION

RELATIVE TO HOUSE

IS AVAILABLE

TO ENSURE MAXIMUM

CAPACITY OF SECTION

50

20

// MEDIUM WIND ZONE

SPECIFYING POSTS

To use the following tables you need to have the beam length for design, know the tributary area (roof area) for the post and know the height of the post. Determining these values is shown in figure 5 on page 10.11

TO CALCULATE TRIBUTARY AREA FOR POSTS

The tributary area for post design only is the total area of the roof, typically length multiplied by width.

POST ORIENTATION

Care must be taken using post sizes $75 \times 50 \times 3$ and $100 \times 50 \times 3$. If posts are placed in orientation as shown use post sizes in tables. If orientation is 90° to that orientation treat post (for sizing) as a $50 \times 50 \times 3$ post.

POST LOADS

Wind speeds taken from NZS 3604; 1999, are ultimate limit state wind speeds

- L = Low wind speed
- M = Medium wind speed
- H = High wind speed
- VH = Very high wind speed

Wind pressure had been calculated using AS/NZS 1170.2.2002

LouvreTec

P nl := (0.5 pair).V s it_β_any².Cfig1.Cdyn.10⁻³

DUCT CATALOGUE 2009[®] LOUVRETEC[®] GROUP hnical specification subject to change without notice

100x100x3

-7.0

// MEDIUM WIND ZONE

PRODUCT CATALOGUE 2009[®] LOUVRETEC[®] GROUP // technical specification subject to change without notice

75

100

POST ORIENTATION

RELATIVE TO HOUSE

IS AVAILABLE

TO ENSURE MAXIMUM

CAPACITY OF SECTION

50

20

// HIGH WIND ZONE

SPECIFYING POSTS

To use the following tables you need to have the beam length for design, know the tributary area (roof area) for the post and know the height of the post. Determining these values is shown in figure 5 on page 10.11

TO CALCULATE TRIBUTARY AREA FOR POSTS

The tributary area for post design only is the total area of the roof, typically length multiplied by width.

POST ORIENTATION

Care must be taken using post sizes $75 \times 50 \times 3$ and $100 \times 50 \times 3$. If posts are placed in orientation as shown use post sizes in tables. If orientation is 90° to that orientation treat post (for sizing) as a $50 \times 50 \times 3$ post.

POST LOADS

Wind speeds taken from NZS 3604; 1999, are ultimate limit state wind speeds

- L = Low wind speed
- M = Medium wind speed
- H = High wind speed
- VH = Very high wind speed

Wind pressure had been calculated using AS/NZS 1170.2.2002

P nl := (0.5 pair).V s it_β_any².Cfig1.Cdyn.10⁻³

PRODUCT CATALOGUE 2009[®] LOUVRETEC[®] GROUP // technical specification subject to change without notice

// HIGH WIND ZONE

PRODUCT CATALOGUE 2009[®] LOUVRETEC[®] GROUP

75

100

POST ORIENTATION

RELATIVE TO HOUSE

IS AVAILABLE

TO ENSURE MAXIMUM

CAPACITY OF SECTION

50

20

// VERY HIGH WIND ZONE

SPECIFYING POSTS

To use the following tables you need to have the beam length for design, know the tributary area (roof area) for the post and know the height of the post. Determining these values is shown in figure 5 on page 10.11

TO CALCULATE TRIBUTARY AREA FOR POSTS

The tributary area for post design only is the total area of the roof, typically length multiplied by width.

POST ORIENTATION

Care must be taken using post sizes $75 \times 50 \times 3$ and $100 \times 50 \times 3$. If posts are placed in orientation as shown use post sizes in tables. If orientation is 90° to that orientation treat post (for sizing) as a $50 \times 50 \times 3$ post.

POST LOADS

Wind speeds taken from NZS 3604; 1999, are ultimate limit state wind speeds

- L = Low wind speed
- M = Medium wind speed
- H = High wind speed
- VH = Very high wind speed

Wind pressure had been calculated using AS/NZS 1170.2.2002

P nl := (0.5 pair).V s it_β_any².Cfig1.Cdyn.10⁻³

PRODUCT CATALOGUE 2009[®] LOUVRETEC[®] GROUP // technical specification subject to change without notice

// VERY HIGH WIND ZONE

PRODUCT CATALOGUE 2009[®] LOUVRETEC[®] GROUP

engineering - footing volume calculation

CONCRETE VOLUME

// TO CALCULATE TRIBUTARY AREA FOR FOOTING SIZE

When calculating the tributary area for footing size please refer to specific structure design, figures 8-11 on page 10.21.

SIZE OF FOOTING REQUIRED

// SQUARE FOOTING

ALUMINIUM POST

Apply Bituminous paint on membrane to area of post fixed into concrete block end of post.

// CIRCULAR FOOTING

ALUMINIUM POST

Apply Bituminous paint on membrane to area of post fixed into concrete block end of post.

TABLE 16 // MINIMUM CONCRETE VOLUME FOR ROOF AREA TO RESIST UPLIFT

	Concrete Volume Required m ³							
Wind Zone	L	м	н	νн				
Tributary area m ²								
1.0	0.03	0.05	0.07	0.09				
2.0	0.07	0.10	0.14	0.18				
3.0	0.10	0.14	0.21	0.27				
4.0	0.14	0.19	0.27	0.36				
6.0	0.21	0.28	0.41	0.54				
8.0	0.28	0.38	0.55	0.72				
10.0	0.34	0.47	0.69	0.90				
12.0	0.41	0.57	0.82	1.08				
14.0	0.48	0.66	0.96	1.26				
16.0	0.55	0.76	1.10	1.44				

Minimum footing size: $0.35 \times 0.35 \times 0.6m$ deep or 0.3m diameter by 0.6m deep

TABLE 17 // FOOTING VOLUME FOR DIMENSIONS SHOWN

Square	Fo	oting					c	ircu	lar fo	lar footi	lar footing
width m		m		depth m		volume m ³	di	iameter	m	m de	m depth m
0.35	x	0.35	x	0.6	=	0.07	0.	.3		x	x 0.6
				0.8	=	0.10					0.8
0.4	x	0.4	x	0.6	=	0.10					1.0
				0.8	=	0.13					1.2
0.45	~	0.45	~	0.6	_	0.13			L		1.4
0.45	×	0.45	×	0.0	-	0.12	0.	.35		x	x 0.6
				0.8	=	0.16					0.8
0.5	x	0.5	×	0.6	=	0.15					1.0
				0.8	=	0.20					1.2
0.65	x	0.65	x	0.6	=	0.25					1.4
				0.8	=	0.34	0.	.4	х		0.6
0.7	x	0.7	x	0.6	=	0.29					0.8
				0.8	=	0.39					1.0
0.75		0.75		0.0	_	0.37				ļ	1.2
0.75	×	0.75	×	0.6	-	0.34				L	1.4
				0.8	=	0.45	0.	.45	x	1	0.6
0.8	x	0.8	x	0.8	=	0.51				(9.8
				1.0	=	0.64					0.1
0.85	x	0.85	x	0.8	=	0.58					.2
				1.0	=	0.72				1	.4
0.9	×	0.9	×	10	=	0.81	0.	.5	х	0	.6
0.7	^	0.7	^	1.0	_	0.01				0	.8
			-	1.0	-	0.01				1	.0
1.0	×	1.0	×	1.2	=	1.20				1	.2
1.1	x	1.1	x	1.2	=	1.45				1.	.4

LouvreTec^{*}

PRODUCT CATALOGUE 2009[©] LOUVRETEC[®] GROUP // technical specification subject to change without notice

TYPICAL DETAIL // SIMPLY SUPPORTED BEAM FIGURE 8

Plan view / Footing Design

TYPICAL DETAIL // CANTILEVER BEAM FIGURE 9

Plan view / Footing Design

LENGTH MAIN SPAN L CANTILEVER POST DESIGN REFER TRIBUTARY AREA FOR TO DESIGN NOTES FOR ORIENTATION FOOTING DESIGN ONLY REFER TABLE 16 (PAGE 10.11 FIG 5) LOUVRE SPAN

MAIN SPAN LENGTH + CANTILEVER 2 LENGTH

LouvreTec

HOUSE

TYPICAL DETAIL // CONTINUOUS BEAM SPAN OPTION I FIGURE 10

Plan view / Footing Design

TYPICAL DETAIL // CONTINUOUS BEAM SPAN OPTION 2 FIGURE 11

TYPICAL DETAIL // BASE PLATE SIZE FOR 50X50 POST

50x50 aluminium post base plate

TYPICAL DETAIL // BASE PLATE SIZES FOR VARIOUS POSTS

SCALE I:8

LouvreTec

PRODUCT CATALOGUE 2009[©] LOUVRETEC[©] GROUP / technical specification subject to change without notice